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Chern-Simons contribution to the structure of the zero mode
of the gauged nonlinear„211…-dimensional Schrödinger equation

L. A. Abramyan
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We study the solutions of the equations of motion in the model of gauged (211)-dimensional nonlinear
Schrödinger equation. The contribution of Chern-Simons gauge fields leads to a significant decrease of the
critical power of self-focusing. We also show that, for appropriate boundary conditions in the model consid-
ered, there exists a regime of turbulent motion of a hydrodynamic type.@S1063-651X~97!05610-9#
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I. INTRODUCTION

The nonlinear Schro¨dinger equation~NSE! is one of the
basic models for nonlinear waves. The traditional field
application of the NSE has been nonlinear optics@1,2#,
where it describes the propagation of wave beams in non
ear dispersive media. The NSE also arises in the treatme
various nonlinear waves in hydrodynamics and plasma ph
ics @3#. A most important area of application in this case
the problem of the detailed description of collapsing fie
distributions@4–6#. With an opposite sign of the nonlinea
ity, the NSE is used as the basic model@7,8# of the low-
dimensional field theory for describing vortices in the pro
lem of Bose-Einstein condensation.

Recent interest in problems involving the solution of t
NSE in spatially two dimensional~2D! systems has arisen i
connection with the special properties exhibited by
11)D systems when the NSE is equipped with a gauge fi
through the replacement of the ordinary derivatives by co
riant ones. In the infrared limit the main contribution to th
equation of motion of the gauge field in a (211)D system is
given by the Chern-Simons~CS! term within the system un
der consideration. For a certain relation of the coupling c
stants the contribution of the gauge field to the Hamilton
compensates for the contribution from the nonlinearity. T
leads to a soliton distribution of the field, which was found
Ref. @9#. The results of Ref.@9# have stimulated a number o
papers@13–15# in this field.

The nature of this phenomenon can easily be unders
if one takes into account that CS term breaks theT- and
P-inversion symmetry of time and space. The chosen dir
tion of the vector in the direction perpendicular to the pla
can be considered as the chosen direction of rotation in
plane leading to the appearance of efficient repulsion. W
this repulsion compensates for the attraction, the Ham
tonian turns out to be limited at the bottom, and the
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solitons @9# correspond to its zero value. These field dist
butions are solutions of the self-dual equations@10#.

The results of Refs.@9,11,12# stimulated a number of pa
pers in this field. We would like to focus on some of them.
Ref. @13# the structures of field configurations were analyz
in full detail for a nonlinearity in the NSE, which describe
repulsion~in the absence of CS interaction! and takes into
account the contribution of the nonzero mean value of
particle number density. Considering the initial problem, t
authors of Ref.@14# concluded that at the most general initi
condition ~with a negative value of the Hamiltonian! the
problems of the equations of motion for the NSE with the C
gauge fields correspond to the collapse regime. Howe
neither the spatial structure of the collapsing mode, nor
critical power for it~i.e., the number of particles in the mode!
were analyzed in this paper. The problem of exact integ
tion of the model under consideration was analyzed in R
@15#. The main result obtained is that the system cannot
integrated exactly excluding the following two cases: se
dual limit @9#, and the situation when the (211)D equations
can be reduced to the (111)D equations. An additional bu
still very important result of that paper was that the solito
of the gauged nonlinear Schro¨dinger equation~GNSE! have
movable singularities on some curves in the two-dimensio
plane. Detailed study of topological defects in low
dimensional systems have always been a key point for
derstanding dynamics of field distributions. The problem
so-called semi-local topological defects in the Che
Simons-Higgs model was considered in a recent paper@16#.

The distribution of complex-valued functionsC(x,y,t)
are defined on the manifoldM which is multiconnected in
spatial 2D systems. Therefore the fundamental homot
group p1(M) determining analytical properties of functio
C coincides with the braid group. There are actually seve
equivalent ways to reflect this fact in the theory. One of th
is the Lagrangian approach that includes the effect of
gauge fields into consideration. The CS term codes the e
tence and specific character of 2D point peculiarities c
tained in the Aharonov-Bohm gauge potentials within t
long-wave description. One usually speaks of the long-ra
interaction represented by means of the CS gauge field
statistical interaction between different field configuration
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,
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56 6027CHERN-SIMONS CONTRIBUTION TO THE STRUCTURE . . .
The different representations induce the different forms
field distribution. There is the so-called anyon representa
@17,18#, when the gauge field in the explicit form is exclude
from the Hamiltonian of the model, thus providing the re
resentation of ‘‘noninteracting’’~by means of the gaug
field! configurations of fieldC(x,y,t). However, in this case
the gauge field is proved to be included into the phase
function C(x,y,t) that contains a cut in the complex plan
which provides multivaluedness of the function.

The existence of a gauge interaction has an exclusiv
topological character, and is not associated with the quan
theory. This interaction, as a rule, was not taken into acco
when studying the classical dynamics of nonlinear mod
with a complex field in spatial 2D systems. Topological p
culiarities certainly put additional restrictions on the quan
zation procedure in these systems@17,18#. The role of the CS
gauge interaction in this case is to take into accountthe vor-
tex part of phase dynamics, which was not usually consid
ered in classical systems when the (211)D NSE model was
used.

The purpose of this paper to study the equation of mot
in the (211)D GNSE model. The main focus of attention
an investigation of the structure of the collapsing distribut
of the fields. Specifically, by means of numerical integrat
of the equation of motion, we find the dependence of
critical power and of the effective width of the zero-ener
mode on the coefficientk in front of the CS term. The limit
k→`, when interaction with the gauge field is negligibl
may be used as a test. In this case the known values o
power and the width are restored.

If the phase of the fieldC(x,y,t) describes the longitudi
nal part in the gauge potentialcompletely, the evolution of
field configurations is determinedonly by the temporal de
pendence of the gauge field. We show that in this case th
equations for the gauge field coincide with the equations
motion of an ideal fluid. The effects of the manifestation
the gauge field in classical systems with nontrivial topolo
including the swimming motion at low Reynolds numb
within the (211)D hydrodynamics, are well known@19#. A
new feature is the fact that the basis for the 2D turbulenc
this case is chaotic dynamics of the CS gauge field. In
sense, the GNSE is a useful hydrodynamical tool@20#.

One can see the following relation between the dynam
of the CS fields and the problem of 2D turbulence. It is w
known that the CS action with appropriate boundary con
tions is a way to classify conformal field theories@21#. The
tools of the conformal field theory, in its turn, may be us
@22# to study the 2D turbulence. We show that within t
model under consideration the relation between the dynam
of CS fields and 2D turbulence problem may be stated
yond the application of the conformal field theory. This d
pendence can be represented considering the evolutio
loops with the stochastization of lines near the points of
loop links.

The effect of contour links in terms of this paper reflec
the effect of braiding world lines of the Aharonov-Boh
point singularities with formation of knots and links aft
projection of world lines onto the 2D space. Stochastizat
near the contour link points within formulation of 2D hydro
dynamics of an ideal fluid in terms of contour variabl
@24,23# was discovered in Ref.@25#. Such a stochastic behav
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ior has a universal character. It is based on existence of
braid group, and is closely connected with the arbitrary ch
acter of localization along the ‘‘time’’ axis of the point o
world lines interlacing. Because of this the indexk of the
linking number proves to be a hidden parameter, which is
included into the Euler equations explicitly.

The paper is organized as follows. Section II contains
equation of motion for the CS gauge field and the GNSE
two differentAnsätzecorresponding to the goals of this pa
per. Section III is devoted to a numerical analysis of t
problem. In conclusion, the results and open questions
discussed.

II. EQUATIONS OF MOTION

We consider a system with a Lagrangian density

L5
k

2
«abgAa]bAg1 iC* ~] t1 iA0!C2 1

2 u~“2 iA!Cu2

1
g

2
uCu4. ~1!

The equations of motion have the form

i ] tC52 1
2 ~“2 iA !2C1A0C2guCu2C, ~2!

@“3A#'52
1

k
uCu2, ~3!

] tAi1] iA052
1

k
« i j j j . ~4!

Hereg is the coupling constant andj 5ImC* (¹2iA)C is the
current density. The Hamiltonian for Eq.~1! is

H5
1

2 E d2r @ u~“2 iA!Cu22guCu4#, ~5!

where the potentialAm , which is the auxiliary variable, is
expressed in terms ofuCu2 in the following way:

A~r ,t !5
1

k E d2r 8G~r2r 8!uCu2~r 8,t !, ~6!

A0~r ,t !5
1

k E d2r 8G~r 2r 8!j ~r 8,t !. ~7!

The Green functionG(r )

Gi~r !5
1

2p

« i j xj

r 2 ~8!

satisfies the equation

“3G~r !52d2~r !. ~9!

Since in the Hamiltonian formulation the potentials a
uniquely determined by Eqs.~6! and~7!, the gauge freedom

Am→Am2]mw, ~10!

C→eiwC ~11!
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is fixed. This is achieved by using the Coulomb gau
“•A50, with the boundary conditions

lim
r→`

r 2Ai~r ,t !5
1

2pk
« i j xjN, ~12!

lim
r→`

A0~r ,t !50. ~13!

The choice of the boundary condition~12! derives from the
necessity of satisfying the integral representation of Gau
law ~3! of CS dynamics:

F5E d2r @“3A#'52
1

k E d2r uCu2. ~14!

Here the magnetic fluxF and the number of particles

N5E d2r uCu2 ~15!

are conserved giving the global constrainF52(1/k)N. In
the result of Eqs.~2!–~4!, there exists the continuity equatio

] tuCu21“• j50. ~16!

Let us use dimensionless fields and coordinates obta
by the following substitutions:

C5uku3/2reiw, A052
k2

2
w2] tw,

Ax52ku1]xw, Ay52kv1]yw, ~17!

t→
22

kuku
t, x→

x

uku
, y→

y

uku
. ~18!

The equation of motion and the continuity equation, e
pressed in terms of the dimensionless fieldsr[r(x,y,t), u
[u(x,y,t), v[v(x,y,t), andw[w(x,y,t) have the forms

rxx1ryy522Cr32rw1r~u21v2!, ~19!

uy2vx52r2, ~20!

ut2wx522vr2, ~21!

v t2wy52ur2, ~22!

r t
252@~ur2!x1~vr2!y# ~23!

with the parameterC5guku and notationsut5] tu, etc.
In the case of the usual NSE,

i ] tC52“

2C2uCu2C, ~24!

the substitutionC5re2 iw(x,y,t) yields the equations

rxx1ryy52r32rw t1r@~wx!
21~wy!2#, ~25!

r t
252@~wxr

2!x1~wyr
2!y#. ~26!

Comparing Eqs.~25! and~26! with Eqs.~19! and~23!, we
note the following distinctions. First, due to gauge invarian
e

’s

ed

-

e

there are no derivatives of the phasew in Eq. ~19!, as there
are in Eq.~25!. Their role is played by the gauge potentia
Therefore the evolution of the fieldr(x,y,t) is defined by
the time derivatives of the functionsu(x,y,t) and v(x,y,t)
in Eqs.~21! and~22!. Unlike Eq.~25! the fieldsu andv are
responsible forthe transversedynamics of the phase of th
field C. The longitudinaldynamics of the phase is describe
by the zero componentw(x,y,t) of the gauge potentia
which takes the place of the functionw t in Eq. ~19!. The
function w(x,y,t) plays the role of a Lagrange multiplier
permitting one to take into account the restriction~20! of the
Gauss lawF52(1/k)N locally.

Second, the continuity equation~23! can be obtained ex
cluding the functionw from Eqs.~21! and ~22! with the aid
of Eq. ~20!. This remark is associated with the followin
problem. Let us assume that in the Coulomb gauge“•A5
2ux2vy1Dw50, the phasew satisfies the equationDw
50. Then the solution to the equationux1vy50 may be
expressed in terms of a functiona(x,y,t) in the following
way:

u5ay , v52ax . ~27!

In this case after replacingt by 22t, Eqs.~20! and~23! have
the forms

axx1ayy52r2, ~28!

r t
21urx

21vry
250. ~29!

The set of Eqs.~28! and~29! represents the ‘‘vorticity’’ form
of the Navier-Stokes equations~Euler equations! for two-
dimensional flows of ideal incompressible fluids, where t
functiona(x,y,t) has the meaning of a stream function. No
that hydrodynamic analogies have been used previously
the solution of (111)D NSE problem@26,20#. However, the
present paper gives rigorous proof that the dynamics of
CS gauge field in the framework of the GNSE model~in the
particular case of the Coulomb gauge withDw50! is
equivalent to the two-dimensional equation of motion of
ideal incompressible fluid. The remarkable fact is that th
is a close analogy between the states with the constant flu
the turbulence and the CS anomaly@22# exposed by Eq.~28!.

We pay our attention to one more circumstance. Us
Gaussian law~28! we rewrite the particle number conserv
tion law ~29! for the vortex representation~27! in the follow-
ing way:

]

]t
Da1

D~Da,a!

D~x,y!
50.

Here D(Da,a)/D(x,y) is the Jacobian. The dimensionle
variables~18! in this representation make the CS coefficie
k a hidden parameter which is not present explicitly in t
last equation. However, the time and space coordina
which are made dimensionless in such a way, are not equ
lent. After transitionx→x/uku, y→y/uku, t→t/uku to the
variables normalized by the coefficientk in the similar way,
the term with the derivative]/]t in the above equation ac
quires the coefficientk/2. This means that the classical lim
k→` is equivalent to the transitionDt→0, i.e., to the tran-
sition to the static field distribution. Note that the charact
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56 6029CHERN-SIMONS CONTRIBUTION TO THE STRUCTURE . . .
istic rate of transition depends on the discrete indexk of the
loop linking number. The existence of hierarchy of discre
times tk5t/uku is a common property of chiral CS system
In this case its peculiarity is that it manifests itself already
classical level~in representation with equal scaling of th
space and time coordinates with respect tok!.

It is useful to compare the gauge invariance of the mo
and the Coulomb gauge used atDw50 with canonical trans-
formations and with area-preserving transformations. The
finitesimal area-preserving diffeomorphism which acts in
frames of CS theory has the form

j i→j i1x i , ] ix i50, ~30!

wherej i5(x,y) and x i5(A1 ,A2). The general solution o
the equation] ix i50 is the sum of two terms,

x i5« i j ] ja~j!1 (
k51

b1

ckx i
k , ~31!

where the second term describes the finite number~given by
the first Betti numberb1! of harmonic forms on the two
dimensional phase space (Ax ,Ay) of the CS theory. Diffeo-
morphisms which resulted from the first term in Eq.~31! are
nothing but canonical transformations@27#. In the case when
the phase space is a torus, the phasew(x,y,t), which satis-
fies the equationDw50, is a linear function,w5ax1by.
From the viewpoint of the NSE this corresponds to the c
stant direction of ray propagation assigned by the vecton
;(a,b). In the general case of the phase space with arbit
topology this equation does not hold, and the fact that
phasew(x,y,t) does not satisfy the equationDw50 gives
rise to an ‘‘additional’’ longitudinal contribution to the po
tentialsu(x,y,t) andv(x,y,t).

Let us consider for example the case when this phen
enon takes place. TheAnsatzfor the field C(x,y,t) corre-
sponds to the generalized lens transformation@6,14#

C~r ,t !5
F~z,t!

g~t!
exp@2 ib~t!z2/21 ilt#. ~32!

Here z5r /g(t), t5*0
t du@ f (u)#22, and b(t)52 f t f 5

2gtg. The solution of the equation of motion~2! in this
representation may be used as the initial data for Euler e
tion ~29! ~the continuity equation! written in the variablesz
andt. Below we focus our attention on the structure of t
zero mode of Eq.~2!.

The gauge potential transforms@9# upon the lens substi
tution as follows:

A~r ,t !→@g~t!#21A~z,t!, ~33!

A0~r ,t !→@g~t!#22@A0~j,t!2b~t!zA~z,t!#, ~34!

while relations~6! and~7! are preserved, where the functio
r5uFu. After these transformations Eq.~2! becomes

i ] rF1~bz22l!F52 1
2 ~“2 iA!2F1A0F2guFu2F,

~35!

because the functionb(t)5(b21bt)/252 f 3f tt/2 does not
equal zero in the casew(x,y,t);b(x21y2), b(t)Þt02t.
e
.
t

l

-
e

-

ry
e

-

a-

However, if we are interested in collapsing solutions w
@28,14# f 2(t);(t02t)/ ln@ln(t02t)#, the structure of the self-
similar nonlinear core@14# of the solution is described by th
solutions of the following equation:

2lF52 1
2 ~“2 iA!2F1A0F2guFu2F. ~36!

In Sec. III, by numerical calculation, we find the zer
energy localized ground state of the GNSE~36!. We show
the dependence of its effective width on the parameteC
5guku as well as the form of the functionsu, v, andw.

III. SOLUTION STRUCTURE

For the numerical analysis of the solutions of Eq.~36! we
use the method of the stabilizing multiplier@29#. The itera-
tion approach for Eq.~36!, which differs from Eq.~19! by
the additional term2lF on the left-hand side has the form

Fn115MnF21$G~p!F@22CFn
31 j Fn~u21v22w!n#%,

~37!

Mn5S E d2p~FFn!2

*d2pG~p!FFnF@22CFn
31 j Fn~u21v22w!n#

D a

.

~38!

HereF (F21) are the operators of the direct~inverse! Fou-
rier transform,G(p)52(p21l)21. The multiplier is j 51
or j 50, respectively, depending on whether the nonlin
contribution of the gauge field in Eq.~29! is taken into ac-
count or neglected. In the casej 50 the usual normalization
in the NSE corresponds toC5 1

2 . Without loss of generality
we shall suppose below thatl51. In the general case th
relations between the functionr, the parameterC, and the
space scaleL, referring to the arbitrary values ofl ~denoted
by a tilde! and atl51 ~denoted by a bar! are as follows:
r̃25Alr̄2, C̃5AlC̄, andL̃5l21L̄2. Therefore the follow-
ing chain of relations takes place:Ñj Þ05N̄j Þ0 /Al
5N̄j 50 /(2AlC̄)5Ñj 50 /(2C̃).

We should choose the exponenta in the stabilizing mul-
tiplier Mn comparing the degrees of homogeneity of ter
on the left- and right-hand sides of Eq.~36! proceeding from
the requirements thatMn→1 at n→`. Without the term
F(u21v22w) the exponenta equals 3/2. New features o
our problem are that the nonlinearity in Eq.~36! has the
polynomial character of the type22CF31bF5, because
both of the termsFw and F(u21v2) are proportional to
F5. Therefore, for the convergence of the iteration appro

FIG. 1. Plot of the functionr(zx,0)5r(0,zy) and the surface
r(zx ,zy).
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a should belong to the range54 <a< 3
2 . In the simulation of

the present paper we have used the valuea5 3
2 , which gives

rapidly the valueMn51 of the stabilizing multiplier. We
have used the distribution of the formF(zx ,zy)
5(Agd/p)exp(2gzx

22dzy
2) as the initial field configurations

with arbitrary constantsg andd. In our calculations we have
obtained rapidly the isotropic solutions.

To regularize the integrals~6! and~7! which diverge loga-
rithmically in coincident points, we substitutedr 2→r 21«2

into the expression for Green function~8! at numerical cal-
culations of gauge potentialsu and v. In the momentum
space this corresponds to the substitution ofd3p f(«p) with
f («p)5*0

`dm exp(2Am21«2p2) for d3p. The factor
f («p) at «p@1 decreases exponentially, cutting off all m
mentum integrals. However, the infrared region remains
same, because at«p!1 *(«p)51. In our calculations the
cutoff radius«, which has the sense of the thickness of t
vortex core, was equal to 1022.

The simulation was performed on a square lattice w
linear sizesLx5Ly512. The maximum number of lattic
sites was limited by the valuen5nxny51283128. To test
our approach we used the solution of the equations of mo
~36! with Am50 ( j 50) and withC5 1

2 which gives the well-
known valueN511.703, as well as the solution of a se
dual equation D ln r52r2 @9# when N54pN,
N51,2 . . . for w52r2, u5]y ln r, v52]x ln r, and C
51.

Figures 1–3 show the configurations of the fieldsr, u,
andw for the specific value of the parameterC54. We may
obtain the form of the functionv(zx ,zy) using the relation
v(zx ,zy)52u(zy ,zx). Using the functionr obtained, we
computed the dependence of the critical powerN ~the par-
ticle number! and of the effective width ^R2&
5N21*d2zz2r2(z) on the parameterC. The results of cal-
culations are given in Table I.

IV. CONCLUSION

In this paper we have studied the specific feature of
dimensionality of our problem reflecting the influence of t

FIG. 2. Plot of the functionu(zx,0) and the surfaceu(zx ,zy).

FIG. 3. Plot ofw(zx,0)5w(0,zy) and the surfacew(zx ,zy).
e

e

h

n

e

CS gauge fields on field configurations in the GNSE mod
Here we summarize some results.

It is seen from Eqs.~15!–~19! that if we neglect CS gauge
fields @j 50 in Eq.~37!# the dependence of the particle num
ber N on the parameterC5guku has the formN5N0 /C.
This dependence is shown by the dotted line in Fig. 4
follows from the results shown in the first line of Table I th
N055.585. The contribution of the CS gauge fields~j 51 in
Table I! leads to a sharp decrease in the values ofN. In
particular, Nj 51(3)/Nj 50(0.5)'0.25. The effective width
^R2& changes slightly. The calculated dependenceN(C) at
C>3 is given in Fig. 4.

As expected, for a fixed value of the parameterC the
numberNj 51(C) is always greater thanNj 50(C), because
the CS gauge fields describe an effective repulsion. In
range 1,C,2.825 we could not perform calculations in th
framework of the method used, due to the breaking of c
vergence of the iteration methods~37! and ~38!. The reason
is the change of the sign in the expression22CFn

3

1 j Fn(u21v22w)n at valuesC.1 of the parameterC.
This phenomenon shows that when the parameterC is of the
order of unity the field contributions are characterized by
great~formally infinite! value of the fluxF5*d2r @“3A]' .
Indeed, for self-dual configurations@9#, when the fieldr de-
creases according to the power lawr(r )}r 2(N11), F5
24pN/k with N51,2, . . . . For thefield distributions
which we use, the decrease law is exponential. Roug
speaking, this corresponds to the valuesN@1 of the desired
limit of

TABLE I. Results of the calculations of the critical powerN
~the particle number!, the effective widtĥ R2&, for various values
of the parameterC.

j C N ^R2&

0 0.5 11.703 1.2607
1 2.85 3.6483 1.2384
1 3 2.9216 1.2464
1 5 1.2825 1.2579
1 10 0.5973 1.2600
1 100 5.852831022 1.260 66
1 1000 5.851631023 1.260 66

FIG. 4. Number of particlesN as a function of the parameterC
without taking into account the gauge field~dotted line! and with
the gauge field~solid line!. The point denotes the valueN(0.5)
511.703.
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56 6031CHERN-SIMONS CONTRIBUTION TO THE STRUCTURE . . .
the flux and the particle numberN54pN in the regionC
>1.

The classical limit of the considered theory correspond
the casek→`, when the gauge field splits off from the fiel
C(x,y,t). For Eq. ~19! and for the valueN(C), the limit
C@1 denotes thatN(C)→0.

The present results correspond to the structure of the n
linear core of the zero-energy localized ground state obta
by the lens transformation for the special valueb50 of the
functionb~t! whenb(t)51/(t01t). In this case the gener
alized lens transformation coincides with the conformal sy
metry transformation@9# of the model. That is the reaso
why the form of the equation of motion~19! of the full
model after the lens transformation coincides with Eq.~36!.
It will be very useful to compare the results obtained by
lens transformation for a finite functionb~t! in Eq. ~35! with
the results of a simulation using the full equations of mot
~19!–~23! in the collapse regime. We plan to return to th
problem in the framework of detailed simulation in the f
ture.

Strong Langmuir turbulence in plasmas is usually d
scribed by the solutions of the NSE@Eq. ~24!#. It is assumed
that a cascade of randomly distributed self-similar collaps
fields is generated. In this paper we show that the spe
features of spatially two-dimensional systems may lead
the traditional picture of turbulence associated with the Eu
equations. However, for the hydrodynamic mechanism
turbulence~HMT! to be involved, it is necessary that a line
profile of the phasew(x,y) (5ax1by) exists in each mode
This implies that the nonlinear~in x andy! contributions to
the temporal evolution of the phase are small.
ys
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One of the media in which the HMT can play a role is
optical medium with random inhomogeneous guiding s
faces. Reflecting from the surfaces, the wave fronts acq
random directions of propagation. For media with weak K
nonlinearity, the nonlinear phase disturbance from adjac
points will not be important. The application of the HM
model suggested above requires separate consideration
will be presented elsewhere.

In conclusion, we studied numerically the structure of t
zero-energy collapsing mode in the GNSE model, observe
strong reduction of the critical powerN in spatial two-
dimensional systems as compared to the conventional va
and showed that in the case of appropriate boundary co
tions the phenomenon of collapse inhibits the developm
of turbulence according to the hydrodynamic scenario.
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