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Chern-Simons contribution to the structure of the zero mode
of the gauged nonlinear(2+1)-dimensional Schralinger equation
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We study the solutions of the equations of motion in the model of gaugedLjlimensional nonlinear
Schralinger equation. The contribution of Chern-Simons gauge fields leads to a significant decrease of the
critical power of self-focusing. We also show that, for appropriate boundary conditions in the model consid-
ered, there exists a regime of turbulent motion of a hydrodynamic {{§#63-651X%97)05610-9

PACS numbes): 42.65.Tg, 47.20.Ky, 52.35.Ra, 11.15.Kc

[. INTRODUCTION solitons[9] correspond to its zero value. These field distri-
butions are solutions of the self-dual equatipb8].
The nonlinear Schidinger equatiofNSE) is one of the The results of Refd.9,11,13 stimulated a number of pa-

basic models for nonlinear waves. The traditional field ofpers in this field. We would like to focus on some of them. In
application of the NSE has been nonlinear optjds2], Ref.[13] the structures of field configurations were analyzed
where it describes the propagation of wave beams in nonlinin full detail for a nonlinearity in the NSE, which describes
ear dispersive media. The NSE also arises in the treatment §¢Pulsion(in the absence of CS interactioand takes into

various nonlinear waves in hydrodynamics and plasma physaccount the contribution of the nonzero mean value of the
ics [3]. A most important area of application in this case igParticle number density. Considering the initial problemz _the
the problem of the detailed description of collapsing ﬁe|dauthors of Ref[14] concluded that at the most general initial

o ~ . L . _condition (with a negative value of the Hamiltoniarthe
g;StTEgtlﬁgE[‘lis 61]J.s\ef\gtgsa?hZpggssiléerr?l?(ﬂn@lofsf] tgf tﬂgnll(ljr\l\?_ar problems of the equations of motion for the NSE with the CS

. . . o ; : _gauge fields correspond to the collapse regime. However,
%mec:}sg);i fgig?g;g;g;sﬁgfmg vortices in the prob neither the spatial structure of the collapsing mode, nor the

: i . . . critical power for it(i.e., the number of particles in the mode
Re_cent interest in problems involving the squtlo_n of ,thewere analyzed in this paper. The problem of exact integra-
NSE in spatially two dimensiondD) systems has arisen in tjon of the model under consideration was analyzed in Ref.
connection with the special properties exhibited by (2[15] The main result obtained is that the system cannot be
+1)D systems when the NSE is equipped with a gauge fielghtegrated exactly excluding the following two cases: self-
through the replacement of the ordinary derivatives by covagual limit [9], and the situation when the 21)D equations
riant ones. In the infrared limit the main contribution to the can be reduced to the ¢11)D equations. An additional but
equation of motion of the gauge field in a{2)D systemis  still very important result of that paper was that the solitons
given by the Chern-Simon&€9) term within the system un- of the gauged nonlinear Sclinger equatior{GNSE have
der consideration. For a certain relation of the coupling conmovable singularities on some curves in the two-dimensional
stants the contribution of the gauge field to the Hamiltoniarplane. Detailed study of topological defects in low-
compensates for the contribution from the nonlinearity. Thisdimensional systems have always been a key point for un-
leads to a soliton distribution of the field, which was found in derstanding dynamics of field distributions. The problem of
Ref.[9]. The results of Ref.9] have stimulated a number of so-called semi-local topological defects in the Chern-
paperd 13—15 in this field. Simons-Higgs model was considered in a recent pap&r
The nature of this phenomenon can easily be understood The distribution of complex-valued function¥(x,y,t)
if one takes into account that CS term breaks fheand are defined on the manifoldt which is multiconnected in
P-inversion symmetry of time and space. The chosen direcspatial 2D systems. Therefore the fundamental homotopy
tion of the vector in the direction perpendicular to the planegroup 7,(M) determining analytical properties of function
can be considered as the chosen direction of rotation in th@ coincides with the braid group. There are actually several
plane leading to the appearance of efficient repulsion. Wheaquivalent ways to reflect this fact in the theory. One of them
this repulsion compensates for the attraction, the Hamilis the Lagrangian approach that includes the effect of CS
tonian turns out to be limited at the bottom, and the CSgauge fields into consideration. The CS term codes the exis-
tence and specific character of 2D point peculiarities con-
tained in the Aharonov-Bohm gauge potentials within the
*Permanent address: Institute of Applied Physics, Russian Acadong-wave description. One usually speaks of the long-range
emy of Sciences, 46 Ul'yanov Street, 603000 Nizhny Novgorod,interaction represented by means of the CS gauge field as a
Russia. Electronic address: alprot@appl.sci-nnov.ru statistical interaction between different field configurations.
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The different representations induce the different forms ofor has a universal character. It is based on existence of the

field distribution. There is the so-called anyon representatiofraid group, and is closely connected with the arbitrary char-

[17,18, when the gauge field in the explicit form is excluded acter of localization along the “time” axis of the point of

from the Hamiltonian of the model, thus providing the rep-world lines interlacing. Because of this the indeof the

resentation of “noninteracting”’(by means of the gauge !inking nu.mber proves to be a_hidden parameter, which is not

field) configurations of field? (x,y,t). However, in this case included into the Euler equations explicitly. .

the gauge field is proved to be included into the phase of Th_e paper |s_organ|zed as follows. Section Il contains the

function ¥ (x,y,t) that contains a cut in the complex plane, €duation of motion for the CS gauge field and the GNSE for

which provides multivaluedness of the function. two d|ﬁer9ntAns§tze corresponding to th.e goals of _thls pa-
The existence of a gauge interaction has an exclusivel{e" Section Il is d.evoted to a numerical anaIyS|s.of the

topological character, and is not associated with the quantuifoblem. In conclusion, the results and open questions are

theory. This interaction, as a rule, was not taken into accourffiScussed.

when studying the classical dynamics of nonlinear models

with a complex field in spatial 2D systems. Topological pe- [l. EQUATIONS OF MOTION

culiarities certainly put additional restrictions on the quanti-

zation procedure in these systefig,18. The role of the CS

gauge interaction in this case is to take into accdbetvor- k

tex part of phase dynamicshich was not usually consid- ~ £=3 e PYA LA, +TIW* (0 +iA) ¥ —3|(V—iA) P2

ered in classical systems when the{2)D NSE model was

used. _ _ _ 9,

The purpose of this paper to study the equation of motion + 2 |w|. (1)

in the (2+1)D GNSE model. The main focus of attention is

an investigation of the structure of the collapsing distributionThe equations of motion have the form

of the fields. Specifically, by means of numerical integration

of the equation of motion, we find the dependence of the 0¥ =—3(V—iA)*¥+A¥ —g|V¥|?V, 2

critical power and of the effective width of the zero-energy

We consider a system with a Lagrangian density

mode on the coefficierk in front of the CS term. The limit [VXA] =— 1 w2 3)
k—oo, when interaction with the gauge field is negligible, + k ’
may be used as a test. In this case the known values of the
power and the width are restored. 1
If the phase of the fielV'(x,y,t) describes the longitudi- IAi+ diAo= — Kk &ijlj- (4)

nal part in the gauge potentiabmpletely the evolution of
field configurations is determineshly by the temporal de- Hereg is the coupling constant afjag= Im¥*(V—iA)¥ is the
pendence of the gauge field/e show that in this case the current density. The Hamiltonian for E¢f) is
equations for the gauge field coincide with the equations of 1
motion of an ideal fluid. The effects of the manifestation of _ 2 . 2 4
the gauge field in classical systems with nontrivial topology, H=3 J dr[|(V=iA Y [*=g[¥[], ®
including the swimming motion at low Reynolds number
within the (2_|_ 1)D hydrodynamicsy are well knov\[n_g] A where the pOtentiaAM, which is the aUXiIiary variable, is
new feature is the fact that the basis for the 2D turbulence iigxpressed in terms ¢f|? in the following way:
this case is chaotic dynamics of the CS gauge field. In this 1
sense, the GNSE s a useful hydrodynamical {Q@. _ Ar,t)== f d2r'G(r—r")|W|2(r’ 1), (6)
One can see the following relation between the dynamics k
of the CS fields and the problem of 2D turbulence. It is well 1
known that the CS action with appropriate boundary condi- _ - 2,1 N
tions is a way to classify conformal field theorigzl]. The Aol(r, 0= k f drrGar=rnj(r’.v. ™
tools of the conformal field theory, in its turn, may be used )
[22] to study the 2D turbulence. We show that within the The Green functiorG(r)
model under consideration the relation between the dynamics 1 eox.
of CS fields and 2D turbulence problem may be stated be- Gi(r)=— SLZJ (8)
yond the application of the conformal field theory. This de- 2m 1
pendence can be represented considering the evolution of . _ .
loops with the stochastization of lines near the points of theatisfies the equation
loop links. —_ 2
The effect of contour links in terms of this paper reflects VXG(r) o(r). ©
the effect of braiding world lines of the Aharonov-Bohm gince in the Hamiltonian formulation the potentials are

point singularities with formation of knots and links after ynjquely determined by Eq$6) and(7), the gauge freedom
projection of world lines onto the 2D space. Stochastization

near the contour link points within formulation of 2D hydro- A,—A,—d,0, (120
dynamics of an ideal fluid in terms of contour variables _
[24,23 was discovered in Ref25]. Such a stochastic behav- ¥ —e'*y (11
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is fixed. This is achieved by using the Coulomb gaugethere are no derivatives of the phagén Eq. (19), as there
V-A=0, with the boundary conditions are in Eq.(25). Their role is played by the gauge potentials.

Therefore the evolution of the field(x,y,t) is defined by
the time derivatives of the functiongx,y,t) andv(x,y,t)

H 2 —
M ALY = 57k suxil. (12 in Egs.(21) and(22). Unlike Eq.(25) the fieldsu ando are
responsible fothe transversalynamics of the phase of the
lim Ag(r,t)=0. (13 field . Thelongitudinaldynamics of the phase is described
r—o by the zero componentv(x,y,t) of the gauge potential

_ - ) which takes the place of the functiop, in Eq. (19). The

necessity of satisfying the integral representation of Gauss'germitting one to take into account the restricti@d) of the

law (3) of CS dynamics: Gauss lawd = — (1K)N locally.
1 Second, the continuity equatid@3) can be obtained ex-
q):f dU[VXA], =—— j d?r| w2, (14)  cluding the functionw from Egs.(21) and(22) with the aid
k of Eq. (20). This remark is associated with the following

problem. Let us assume that in the Coulomb gaWg& =

Here the magnetic flu and the number of particles ~U,—v,+Ae=0, the phasep satisfies the equation ¢

=0. Then the solution to the equatian+v,=0 may be
N=f d?r|w|? (15  expressed in terms of a functia(x,y,t) in the following
way:

are conserved giving the global constran=—(1/k)N. In

the result of Eqs(2)—(4), there exists the continuity equation u=ay, v=-2ax. (27)
5| P2+ V.j=0. (16) In this case after replacirigoy — 2t, Egs.(20) and(23) have
the forms
Let us use dimensionless fields and coordinates obtained )
by the following substitutions: Axx T ayy= —p% (28)
, K2 p2+up2+vp3=0. (29)
\I,:|k|3/2pel<p, AOZ_?W_&I% t X y

The set of Eqs(28) and(29) represents the “vorticity” form
— _ of the Navier-Stokes equatior(&uler equationsfor two-
A= —kut o, Ay=—kotdye, (7 dimensional flows of ideal incompressible fluids, where the
_ X y functiona(x,y,t) has the meaning of a stream function. Note
t—)m t, X—)m, yﬂm. (18)  that hydrodynamic analogies have been used previously for
the solution of (1 1)D NSE probleni26,20. However, the
present paper gives rigorous proof that the dynamics of the
CS gauge field in the framework of the GNSE mo(elthe
particular case of the Coulomb gauge withp=0) is
equivalent to the two-dimensional equation of motion of an

The equation of motion and the continuity equation, ex-
pressed in terms of the dimensionless figlésp(X,y,t), u
=u(x,y,t), v=v(x,y,t), andw=w(x,y,t) have the forms

Pxxt pyy=—2Cp3—pw+p(u?+v?), (190  ideal incompressible fluid. The remarkable fact is that there

is a close analogy between the states with the constant flux in

Uy—vy=— p?, (200 the turbulence and the CS anomg22] exposed by Eq28).

We pay our attention to one more circumstance. Using
U= W, = —2vp?, (21 Gaussian law(28) we rewrite the particle number conserva-

tion law (29) for the vortex representatid@?) in the follow-

v—Wy=2up?, (220 ing way:

pi=2[(up?)x+(vp?)y] (23 9 D(Aa,a)

E a+ —D(X ) =0.
with the paramete€=g|k| and notationsi,= d,u, etc. Y
In the case of the usual NSE, Here D(Aa,a)/D(x,y) is the Jacobian. The dimensionless

. [ variables(18) in this representation make the CS coefficient
LoV == V20— [W|*, (24 k a hidden parameter which is not present explicitly in the
last equation. However, the time and space coordinates,

the substitution¥ = pe~'*>¥'Y) yields the equations . ; . ) .
P y d which are made dimensionless in such a way, are not equiva-

Pt pov=—p3— por+ pl(0) 2+ (¢)?], (25)  lent. After transitionx—x/[k|, y—y/[k|, t—t/|k| to the
o t g Y variables normalized by the coefficiekin the similar way,
Pt2=2[(<PxPZ)x+(<PyPZ)y]- (26)  the term with the derivative/dt in the above equation ac-

quires the coefficienk/2. This means that the classical limit
Comparing Eqs(25) and(26) with Egs.(19) and(23), we  k—oo is equivalent to the transitioAt—0, i.e., to the tran-
note the following distinctions. First, due to gauge invariancesition to the static field distribution. Note that the character-
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istic rate of transition depends on the discrete indef the  However, if we are interested in collapsing solutions with
loop linking number. The existence of hierarchy of discrete[28,14 f2(t)~ (to—t)/In[In(t,—t)], the structure of the self-
timest,=t/|k| is @ common property of chiral CS systems. similar nonlinear corg¢14] of the solution is described by the
In this case its peculiarity is that it manifests itself already atsolutions of the following equation:

classical level(in representation with equal scaling of the
space and time coordinates with respeck}o

It is useful to compare the gauge invariance of the mode
and the Coulomb gauge useddap=0 with canonical trans-
formations and with area-preserving transformations. The in
finitesimal area-preserving diffeomorphism which acts in th
frames of CS theory has the form

&—&itxi, dixi=0, (30

where &= (x,y) and x;=(A1,A,). The general solution of
the equatiory; x;=0 is the sum of two terms,

by

XiISijﬁja(f)Jrgl CXt (31

where the second term describes the finite nunigeen by
the first Betti numberb,) of harmonic forms on the two-
dimensional phase spacg,(,Ay) of the CS theory. Diffeo-
morphisms which resulted from the first term in E81) are
nothing but canonical transformatiof7]. In the case when
the phase space is a torus, the phaée,y,t), which satis-
fies the equatiol\ =0, is a linear functiongp=ax+hby.

e

—NP=—3(V—iA)2D+A D —g|D|?D. (36)
l In Sec. lll, by numerical calculation, we find the zero-
energy localized ground state of the GN&I). We show

the dependence of its effective width on the paraméter
=g|k| as well as the form of the functions v, andw.

IIl. SOLUTION STRUCTURE

For the numerical analysis of the solutions of E2f) we
use the method of the stabilizing multiplig29]. The itera-
tion approach for Eq(36), which differs from Eq.(19) by
the additional term—\® on the left-hand side has the form

Dy =M F HG(p)F[—2CD3+ D, (u+v2—w),]},
(37)

a

f d?p(Fd,)?

depG(p)F@nF[—2ch§+jq>n(u2+v2—w)n]( )
38

M,=

HereF (F~1) are the operators of the direghverse Fou-

From the viewpoint of the NSE this corresponds to the con+ier transform,G(p) = —(p?+\) L. The multiplier isj=1
stant direction of ray propagation assigned by the veator or j=0, respectively, depending on whether the nonlinear
~(a,b). In the general case of the phase space with arbitrargontribution of the gauge field in Eq29) is taken into ac-
topology this equation does not hold, and the fact that theount or neglected. In the cage: 0 the usual normalization
phase¢(x,y,t) does not satisfy the equatiahe=0 gives in the NSE corresponds ©= 3. Without loss of generality
rise to an “additional” longitudinal contribution to the po- we shall suppose below that=1. In the general case the
tentialsu(x,y,t) andv(x,y,t). relations between the functiom the parameteC, and the
Let us consider for example the case when this phenomrspace scalé, referring to the arbitrary values af (denoted
enon takes place. Thansatzfor the field W (x,y,t) corre- by a tildg and atA=1 (denoted by a barare as follows:
sponds to the generalized lens transformaf®i4] p= \/XEZ C=+\C, andL=\"1L2. Therefore the follow-
ing_chain of relations takes placeN;.,= Nj;&o/\/x
DL 7) B = ~
=N;_o/(2yNC)=N;_/(2C).
9(7) We should choose the exponenin the stabilizing mul-
Here ¢=rig(n), == fidulf(u)] 2 and b(r)=—f.f= tiplier M,, comparing the degrees of homogeneity of terms
—g,9. The solution of the equation of motiof2) in this

on the left- and right-hand sides of E®6) proceeding from
. nE the requirements thatl,—1 at n—oo. Without the term

representation may be used as the initial data for Euler eqURP (y2+p2—

tion (29) (the continuity equationwritten in the variableg

w) the exponentx equals 3/2. New features of
h our problem are that the nonlinearity in E(B6) has the

and 7. Below we focus our attention on the structure of the

zero mode of Eq(2).

polynomial character of the type 2C®3+b®°, because
both of the termsbw and ®(u?+v?) are proportional to

The gauge potential transformi8] upon the lens substi- ( o) prop
tution as follows:

P(r,t)= exd —ib(7)&2+inT]. (32

®°. Therefore, for the convergence of the iteration approach

1.6 ~
A(r,H)—[g(n] A7), (33 )
p(éx), //\\
Ao(r ) —[9(n] TAg(£ 1) —b(NEAL D], (39 . I
while relations(6) and(7) are preserved, where the function J \
p=|®|. After these transformations E¢R) becomes , \\
: 2 1 A2 2 0.0 sty
19, D+ (BE-N)D=—1(V—iA)2D+A,D—g|D|2D, ! )
(35) -6 0 gx 8

because the functiog(7)=(b2+b,)/2= —f3f,/2 does not

FIG. 1. Plot of the functiorp(¢,,0)=p(0,{,) and the surface
equal zero in the case(x,y,t)~b(x?+y?), b(t)#ty,—t.

p(¢x 1§y)-



FIG. 2. Plot of the functioru(¢,,0) and the surfaca({y,{y).

a should belong to the range<a<32. In the simulation of
the present paper we have used the valael, which gives
rapidly the valueM,=1 of the stabilizing multiplier. We
have used the distribution of the formd({,{y)
= (Vydl m)exp(—yi5— 8% as the initial field configurations
with arbitrary constanty and é. In our calculations we have
obtained rapidly the isotropic solutions.

To regularize the integral®) and(7) which diverge loga-
rithmically in coincident points, we substituted—r?+ &2
into the expression for Green functid®) at numerical cal-
culations of gauge potentials and v. In the momentum
space this corresponds to the substitutiom¥g f(p) with
f(ep)=/odm exp(—Vm?+¢&2p?) for d3p. The factor
f(ep) atep>1 decreases exponentially, cutting off all mo-
mentum integrals. However, the infrared region remains th
same, because ap<1 [(ep)=1. In our calculations the
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TABLE I. Results of the calculations of the critical powr
(the particle numbey the effective width(R?), for various values
of the parametec€.

j c N (R?)

0 0.5 11.703 1.2607
1 2.85 3.6483 1.2384
1 3 2.9216 1.2464
1 5 1.2825 1.2579
1 10 0.5973 1.2600
1 100 5.852& 10 2 1.260 66
1 1000 5.851610 3 1.260 66

CS gauge fields on field configurations in the GNSE model.
Here we summarize some results.

Itis seen from Eqs.15)—(19) that if we neglect CS gauge
fields[j=0 in Eq.(37)] the dependence of the particle num-
ber N on the parameteC=g|k| has the formN=N,/C.
This dependence is shown by the dotted line in Fig. 4. It
follows from the results shown in the first line of Table | that
Ny=5.585. The contribution of the CS gauge fie{fls- 1 in
Table ) leads to a sharp decrease in the valuesNofin
particular, Nj=1(3)/N;-¢(0.5)~0.25. The effective width
(R?) changes slightly. The calculated dependeN¢€E) at
&€=3 is given in Fig. 4.

As expected, for a fixed value of the parameg@ithe

cutoff radiuse, which has the sense of the thickness of thenumberN;_,(C) is always greater thaN;_o(C), because

vortex core, was equal to 16.

the CS gauge fields describe an effective repulsion. In the

The simulation was performed on a square lattice withrange < C<2.825 we could not perform calculations in the

linear sizesL,=L,=12. The maximum number of lattice
sites was limited by the value=n,n,=128x128. To test

our approach we used the solution of the equations of motio

(36) with A,=0 (j =0) and withC= 3 which gives the well-
known valueN=11.703, as well as the solution of a self-
dual equation A Inp=—p> [9] when N=4xA\,
Nil,z ...forw=—p% u=d,Inp, v=—dxInp, and C

Figures 1-3 show the configurations of the fiefgsu,
andw for the specific value of the parametér=4. We may
obtain the form of the functiom ({,,{y) using the relation
v(¢x,¢y)=—u({y.¢y). Using the functionp obtained, we
computed the dependence of the critical powefthe par-
ticle numbey and of the effective width (R?)
=N"1fd%,8p?(0) on the paramete€. The results of cal-
culations are given in Table I.

IV. CONCLUSION

In this paper we have studied the specific feature of the

dimensionality of our problem reflecting the influence of the

FIG. 3. Plot ofw(¢{,,0)=w(0,{,) and the surfacev({x,{y).

framework of the method used, due to the breaking of con-
vergence of the iteration metho@37) and (38). The reason

5 the change of the sign in the expressienZCd)ﬁ
+jd,(u?+0v2—w), at valuesC=1 of the parameteC.
This phenomenon shows that when the param@tisr of the
order of unity the field contributions are characterized by a
great(formally infinite) value of the flux® = [d?r[VXA], .
Indeed, for self-dual configuratio9], when the fieldp de-
creases according to the power Igw(r)ocr ~V*1) @ =
—4a Nk with N=1,2,... . For thefield distributions
which we use, the decrease law is exponential. Roughly
speaking, this corresponds to the valués 1 of the desired
limit of

FIG. 4. Number of particledl as a function of the parametér
without taking into account the gauge fieldotted ling and with
the gauge fieldsolid line). The point denotes the valug(0.5)
=11.703.
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the flux and the particle numb&t=4xA in the regionC One of the media in which the HMT can play a role is an
>1. optical medium with random inhomogeneous guiding sur-
The classical limit of the considered theory corresponds tdaces. Reflecting from the surfaces, the wave fronts acquire
the cas&k— o, when the gauge field splits off from the field random directions of propagation. For media with weak Kerr
W(x,y,t). For Eq.(19) and for the valueN(C), the limit ~ nonlinearity, the nonlinear phase disturbance from adjacent
C>1 denotes thal(C)—0. points will not be important. The application of the HMT
The present results correspond to the structure of the nornodel suggested above requires separate consideration, and
linear core of the zero-energy localized ground state obtaine¥ill be presented elsewhere.
by the lens transformation for the special vajgie 0 of the In conclusion, we studied numerically the structure of the
function B(7) when (1) =1/(7o+ 7). In this case the gener- Zero-energy collapsing mode in the GNSE model, observed a
alized lens transformation coincides with the conformal sym=strong reduction of the critical poweN in spatial two-
metry transformatiorf9] of the model. That is the reason dimensional systems as compared to the conventional values,
why the form of the equation of motiofl9) of the full and showed that in the case of appropriate boundary condi-
model after the lens transformation coincides with E3§). tions the phenomenon of collapse inhibits the development
It will be very useful to compare the results obtained by theof turbulence according to the hydrodynamic scenario.
lens transformation for a finite functigs(7) in Eq. (35) with
the results of a simulation using the full equations of motion
(19—(23) in the collapse regime. We plan to return to this ACKNOWLEDGMENTS
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